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S U M M A R Y  
An approximation (the linear version of Burgers' equation with appropriate initial data) to a simple wave initial 
value problem for a set of two linear coupled dissipative partial differential equations is discussed. It has been shown 
that for the class of square integrable initial functions of which the spectra (Fourier-transforms) have bounded support 
2A the approximation is valid for some finite interval of time [0, T(A)]. For some finite time 7"1 > T(A) the approxima- 
tion may fail. However, for t ~  0% it is asymptotically valid again. For the class of initial conditions mentioned above 
expansions in series of the two solutions, which for every finite interval of time [0, z] are convergent, may be con- 
structed. 

1. Introduction 

1.1. Statement of the Problem 

In physics one occasionally deals with the following simple wave initial value problem 

(s, 0) = f  (s), (1) 

fl(s, 0)= 0, (2) 
for the set of nonlinear dissipative partial differential equations 

at + [1 + e ~  (e, fl)]as = #(ass-fix,), (3) 

f i t -  [1 +e~(a ,  fl)]fls---#(fls,- a~),  (4) 

where s runs through the interval ( -  o% oe), t through [0, oe), ~(a, t )  and ku(a, t )  are con- 
tinuous, often even monotonic functions of a and t ,  # and e are real positive constants and the 
subscripts s, t denote partial differentiation with respect to s, respectively t. Moreover 4~, ~u and 
e have been chosen such that if # = 0 the remaining set is hyperbolic. A well-known example is 
found in Lighthill's theory of waves in a real gas (Lighthill [1]). 

An exact and complete solution of this initial value problem is at present beyond all pos- 
sibilities. Therefore Lighthill used an approximation. When # = 0 it is seen that (4) is satisfied 
identically by fi (s, t ) -0 .  (3) then becomes a first order equation in a, which is readily solved. 
The resultant solution is a simple wave solution (cf. Lax [2]) for the hyperbolic set obtained by 
putting # = 0. This explains the name we gave to the initial value problem. Lighthill's ap- 
proximation is based on the assumption that, when # is small, fl will be negligible, at any rate 
for some finite interval of time. In this way one obtains from (3): 

a,+ [1+ 0)] = (5) 
which is an equation of Burgers type. In Lighthill's example ~ is linear in a. The exact solution 
of the initial value problem is known in that case. The approximation of the solution a of 
(1)-(4) by the solution eo of (1) and (5) henceforth will be called the simple wave approximation. 

Now some questions that arise are: 
1. May, for some finite interval of time [0, T] and somef(x),  the simple wave approximation 

be used indeed? If this is true, what can be said about the dependence of T on the initial 
data? May T tend to infinity? 

* Detached by Philips Research Laboratories. 
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2. Frequently in such problems one attempts an expansion in series of a where ao is the first 
term in the expansion. Does such an expansion really exist for some finite interval of time 
[0, r ]  and somef(x)  and if so, does r depend o n f ( x )  and may T tend to infinity? 

In general these questions would present rather formidable difficulties. Therefore we make a 
simplification by studying the linear system 

a t+a ,  = #(a,~-fl,s), (6) 

fl,-fl~ = #(fis~- c%), (7) 

subject to (1) and (2). 
The Burgers approximation equation is given by 

at + a ~ -  # a ~  = 0 .  (8) 

The solution of (8) subject to (1) will be called a0 again. 
We still did not speak about what precisely we mean with a useful approximation. For solu- 

tions which are square integrable (we restrict ourselves to these solutions) we shall call the 
solution ao a useful approximation to a in the interval of time [t,, t2] (t2 > q) if for every 
t Its, td  

]a-ao[2ds ~ l~lZds. 

S_~ ]al 2 ds often has the meaning of the energy of the a-mode. It then provides a quite suitable 
norm for such a problem. 

In a forthcoming paper we will treat a physical problem which leads to a special form of (3) 
and (4). In this case the equations can be transformed into linear equations of the form (6) and 
(7). Therefore the following considerations have at least some physical meaning. 

2. Definitions and Notations 

R: the interval ( - o %  oo) of the real numbers. 
Q : a strip in the s-t plane containing all the points satisfying the inequalities - oe < s < oe 

and 0<  t<  T <  oe. 
Consider vector-valued functions of n complex-valued components u=col.(ul(s, t) ... .  , 

u,(s, t)) defined on R (t fixed) and Q respectively. 
L2(R ) is a Hilbert-space containing all square integrable n component vector-valued 

functions on R, with inner products ( , ) and norms I[ II defined by 

(u, v) = u* (s),: (s) as ; I I u II = (u, u ? ,  
- - o 0  

u t being the hermitian transpose of u. 
The Sobolev-space W2"(R) (m a positive natural number) is a Hilbert-space containing all 

vector-valued L 2 (R) functions u (s) whose generalised derivatives D k u, (k = 1, 2 . . . . .  m) also are 
elements of L2 (R) (Smirnow [3]). The inner product and norm are respectively 

(u, V)m = ~ (D'u, Div)+(u, v); ]]ull,~ = (u, u)~. 
i=1 

C (R) is the set of all continuous, C * (R) the set of all i times continuously differentiable functions 
on R. 

L A (R) is a Hilbert-space containing all vector-valued functions u (s) in L2 (R), of which the 
Fourier-transform fi(k), defined by 

~(k) = f ~ u ( s )exp( - i k s ) .ds ,  (1) 
j -  oo 

vanishes identically outside a finite interval [ - A ,  A] (A e R), with inner products ( , )R,a and 
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norms IF II~.a defined by: 

(u, = u'(s)v(s)ds; tJull. --(u, 
3-- oo 

Using Parseval's theorem one easily finds 

I/ulIR,A = 2 ~  __4  ~t (k) fi(k)dk . 

L~.q (Q) is a Hilbert space containing all vector-valued square integrable functions on Q, with 
the properties: The Fourier-transforms defined similar to (1), for almost every t~ [0, T] 
vanish identically outside a finite interval [ - A ,  A], A ~ R. The inner products ( , )Q,q,A and 
norms 11 [tQ,q,~ are defined by 

: 1 f i q (k, t) (k,t)dkdt; Ilu ll , ,  = (u, u), 
(u.v)e . , .~  ~ o - 4  

where q is a positive continuous function of k and t, which for every k s [ -  A, A], t e [0, T] is 
bounded from above and from below. If q =  1, we simply write L~(Q), II [le,: and ( , )e.~" 

Finally we quote (for the proof see Smirnow [3], p. 486): 

Lemma 1" Let u(s)~ W'~(R) then DPu(s)-*O (1 G p< m) and u(s)--*O when [s[--*oo. 

Remark: Where not stated otherwise all integrations are in the sense of Lebesque and all 
differentiations are meant in the generalised sense, although the classical notation will be 
retained. 

3. The Solution of the Initial Value Problem 

3.1 Existence and Uniqueness 

Consider, for vector-valued functions of two components u(s, t) defined on Q, the operator 
equation 

u, = A u ,  (a) 

where u = col. (c~, fl) and 

A = D~s  + A ~s--y, 

L D =  A = #  . 
0 1 ' 1 

As A satisfies" (i) A is closed; (ii) for every u ~ D a Re(u, Au)< fli(u, u); (iii) for every v ~ DA, 
he(v, A'v)___< B2(v, v); (iv) D a  = W~(R) is dense in L2(R), where Da is the domain of A, A* the 
adjoint operator and ill, f12 are real positive constants, it can be proved that (de Graaf [4]): 

Theorem 1 
1. The operator equation 

(W~ Lz(R)) and for every 0 <  t <  T <  oe the solution is an element of W~(R). 
2. u(s, t)-*u(s, O)for t~O in the sense of the Lz-norm. 
3. For an arbitrary initial condition u (s, O) ~ W"2 (R) (n > 0), u (s, t) may be represented by 

u (s, t) = ~ exp - (Ak 2 + ikD) t ' f  (k) exp (iks)" dk,  
- -  o O  

u t = Au is uniquely solvable for every u(s, O)~ W"z (R), n >= 0 

(2) 
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where f (k) is the Fourier-transform of the initial value u(s, O) and i= ~ - 1 .  
4. The results of(l) ,  (2) and (3) are true for L~(R) instead of L2(R) as well. 

For purely parabolic equations u(s, 0)sL2(R) implies u(s, t)s W"2(R). The linear Burgers 
equation, to which the existence theorem applies in the same manner, belongs to this class of 
equations. The coupled system (1) however is not purely parabolic as A has an eigenvalue zero. 
This constitutes an essential difference between the coupled system and the linear Burgers 
equation satisfied by %. 

3.2 Stability and a Maximum-Modulus Principle 

Theorem 2. Let u (s, O) = f (s) ~ L 2 (R). The solution of the system (1) is stable in the sense that 
for every t >__ 0 

Ilu(t)}l < K Ilfll, 

where K is a positive constant. 

Proof: Let f(s)~ L~ (R). Premultiply ut -Dus-Auss  = 0 with u*, take the complex conjugate 
of the resulting equation and add. We find 

a a 
at (u* u) + ~s ( - u* Ou - ut Aus -  uts Au) + 2uts Au~ = O. (3) 

This is essentially the energy balance equation. If we integrate (3) along the entire s-axis and 
use lemma 1, we get 

Ilu(t)ll < [[ftl (t > 0 ) .  (4) 

The remaining part of the proof depends on closure. As L~2(R) is dense everywhere in Lz(R ) 
it is possible to find a sequence {f,} ~ LA(R) which converges to f e  L2(R) in the sense of the 
L2-norm. Then the solutions u,(s, t) corresponding to f,(s) also converge in that norm and 
according to (4) limn-~o~ Un(S, t)=U(S, t), U(S, 0)=f ( s ) ,  U(S, t) is a solution and [[u(t)l[ < [IfU. 
This proves the theorem. 

From a physical point of view it often is desirable or even necessary to have a maximum- 
modulus principle. It is given by: 

Theorem 3. Let u(s, O)=f  (s)eW~(R) and Ilf[]l <= 6.,/2 (5 is some real positive constant), 
then we may define a function ~(s, t)e C (R) such that for t > 0 

5(s, t) = u(s, t) a.e., 

sup 151 =< 6,  
s~R  

where [a[ = I~l + IBI. 

Proof: Let u(s, O)=f(s)eL~(R) and I I f l l l<&]2.  I fu  is a solution, us is too. In this way we 
find the balance-equation (3) where u has been replaced by us. Adding (3) and the new equation, 
integrating the result along the entire s-axis and using lemma 1, we obtain 

Ilu(t)[lx =< I l f l l l=6x/2 (t>=O). (5) 

By means of closure we may show that (5) also holds for f (s) s W~ (R). From Sobolev's em- 
bedding theorem (Peletier [5]) we deduce the existence of a positive number M and a function 
~(s, t)eC(R) such that for t > 0  

~(s, t) = u(s, t) a.e., 

sup [fi(t)[ _-< M I1 u(t)[11. 
s ~ R  
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According to the before mentioned paper [5] the lowest value of M that may be chosen equals 
�89 which completes the proof of the theorem. 

3.3 The Solution of the Simple Wave Initial Value problem 

The solution (2) may be written as 

c ~ ( s , t ) = ~  . -  1 + 912)(z)exph(z,4)t 'dz,  
oO - - o 0  

(6) 

f l (s , t )= ~ ~_ 1 + 2 9(1)(z)exph(z, 4) t 'dz ,  
oo --o0 

where 

s 
~ k = z ,  4 = - ,  

t 

9 (1) (z) = (2i#)-1 z (1 - z z) - ~ f  (#-1 z), 

g(2) (z) = (2p)-1 [ _ 1 + (1 - z2) ~3 (1 - z 2 ) - * f  (# -1 z), 

h(z, 4) = [iz(a-z )�89 + i z 4 ]  . 

(7) 

The number 1 respectively 2 through the integration symbol means integration in the first, 
respectively, second sheet of the complex z-plane. The first sheet is defined by 

lira ( l - z 2 )  ~ i 0 <  arg z <  

and the second by 

lira (1-z2)~ i 0 <  arg z <  
izl~oo z 

This corresponds to cutting the z-plane from - oe to - 1 and from 1 to oe. In the remaining 
part of this paper we shall confine ourselves almost always to initial data in L~ (R), although 
most of the results also apply to other classes of functions. 

4. A Series Expansion of the Solution 

Let f (s) belong to L A (R). Defining the operators M and N by 

t O 8 2 8 8 8 2 

M = ~ + ~s - /~ 8s 2 '  N - -  8t 8S ] 2  iS2, 

we find by applying the first one to (1.6) and the second to (1.7) 

84~ 
L~ = /t 2 Os 4 , 

Lfi : 122 04fl 
8S 4 

where 
82 g2 ~3 84 

L = M N  - 8t  2 63s2 2f l  ~ "-~ [2 2 8S 4 . 

(1) 

(2) 

The initial conditions for this system are given by 

c~ (s, 0) = f (s), (3) 
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df  d2 f  
at(s, O) = - d-ss + # ds - -~ '  (4) 

fi(s, 0)= 0, (5) 
d2f  

fit(s, O)~- - # ds 2 . (6) 

As we assumed ~ and fi to be in L~ (R), all the operations were allowed indeed. By now it may 
be seen that (1)-(6) are equivalent to (1.6) and (1.7) subject to (1.1) and (1.2). Consider in LJ (Q) 
the integral equations: 

= Bc~+7o, f i=  B f i+ f lo ,  (7) 

with hold for every t e [0, T] and almost every s e R and where 

Ba = ~ -A dk d r k 3 s i n k ( t - z )  e-uk2(t-*)-~k~y(k, Z), 

% = ~ - ~ f ( k )  eik(~-t)-**k~tdk, (8) 

fio = ~ -a k f  (k) sin kt eiks-uk2t dk . 

Using these integral equations an expansion in series of the solution of our original system 
(1.6) and (1.7) will be derived. Of course other integral equations could have been used. However 
we choose the present ones as ~0 satisfies Burgers' equation and the initial value a (s, 0 ) = f  (s) 
exactly. 

Theorem 4. For every finite A and every finite positive number T, (7) has a solution which for  
every t~  [0, T] belongs to L~ (R). It is the limit of  the sequence 

N 

for 
n=O 

where 

~(o)=~o,  ~(n+l)= Boa(n) (n = 0, 1, 2 . . . .  ) .  

Proof: From 

1 = dr 1 ... dzn#2nk 3" sin k('(i_l--Zj) 'e-uk2t-ik':n[f(k)] 
n = l  0 j = l  

~ tn#2nlkl 3n 
<_ e-uk2tl f  (k) h -- (e,U21kl~._ 1)e-Uk2'lf  (k)l 

n=l n! 

where Zo = t, we immediately deduce 

I ~ cd")(t) < (etU2a3-1). II~t~ 
n= 1 R ,A  

which implies that for all t E [0, T] 
N 

E 
n=O 

(9) 

(10) 
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has a limit for N ~  oo in the sense of the L~ (R) norm. The limit will be called c~. Furthermore we 
have : 

11 (2 
For every t ~ [0, T] and almost every s 

N N - 1  

F~ ~<n) = B ~ ~") + C~0, 
n = 0  n = 0  

which implies, using lim e -  = 0 ,  lira B e -  e ( = 0  
N ~ o  n = 0  IIQ A N-~oo n=O Q,A 

However as, according to (9), e is a continuous function of t, we obtain that for every t e [0, T] 
and almost every s e R ~ satisfies (7). 

Theorem 5. The solution cr (s, t), found in theorem 4, for every t ~ [0, T] is unique in the sense 
of the L~-norm and 

[Ic~--~ollR,~ < (eru~A~--l)[c~ R,~ (t~[0, T] ) .  

Proof: Let c( be another solution belonging to L A (Q) as well. 
Introduce the function q (k, t) by 

qZ (k, t) = exp - {1~ z k z (e zuk~t- 1)}. 

Call the difference ~ - ~ ' =  4. Using Schwarz's inequality we find: 

= 2n-- 0 dt -~ dkk6q2(k, t) 0 sin k ( t - r ) ' e -"k2( t -~)q(k ,  r) q ~ � 9  ~(k, "c) 2 

_< maximum #4k6 dt d'c qx(k' t) e_2,k,-(,_~ {. 1[~[12 
- -  { t s [ 0 ,  T ] ;  ke[-A, Al}[ 0 0 ~ ~ Q,d,q 

< 1  ^ 2  

As ~=B~ for all t a [-0, T] and almost every s E R and 0 =  114-B~ 2 ~JIQ,~,q we infer 
that ]1 ~ [IQ,A,q =0  and so II ~ IIQ,~ = 0. Using the continuity with respect to t of 4, this proofs the 
first part of the theorem. The second part follows immediately from (10) and the relationship 
]1%lIR,~ < I] ~IIR,~ which will be proved in the next section. 

Corollary 1 
It is clear that similar results may be proved for the fl-mode by using 

~ /?("), where fl(1)=/~o, fl("+l)=Bfl(") ( n = 1 , 2 , 3  . . . .  ) 
n = l  

Corollary 2 
For functionsf (s)~ L2 (R), but not in any L A (R), similar theorems may be proved (the integra- 
tion-interval with respect to k then runs from - oe to oe) i f f  (k) tends to zero at least as fast as 
exp( -e [k l  3) (c >~ >0) when Ikl~oo. This may be seen from (9). 

It remains to be proved that c~ and fl thus found also Satisfy the original differential equations 
(1.6) and (1.7), subject to the initial conditions ~ (s, 0 ) = f  (s),/~ (s, 0)= 0. Using the formulas of 
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appendix 1, it is easily shown that they satisfy (1)-(6) but then we immediately may deduce that 
they satisfy the original equfftions and initial conditions as well. 

5. Behaviour when t-+ 

5.1 The Simple Wave Approximation when t--+oo 

At first we note an interesting relation between the energy of the e-mode and the energy of the 
fl-mode. 

Theorem 6. Let f(s)~L2(R), then for all t >O 

[I ~(t)[] 2 = [I/~(t)ll eSr II c%(t)][ 2 , (1) 

where [Ic%1[ a is the energy of the solution So of'the corresponding Burgers problem. 

Proof: Using (4.8), Parseval's theorem and transformation to the integration variable z by 
means of z =  #k gives 

[]c%(t)lh2- 2n# _~ e-e=2"-~tlf(#-lz)jedz" (2) 

As is easily seen from (3.6) and (3.7) the solutions ~ and/3 may be represented by one integral 
(with respect to z) each. Transforming the integration variable z to k, using Parseval's theorem 
and transforming backwards, we find that 

I]/~(t)ll 2 - sin z zlx/i-A~-z2;t . e-a~2u-"lf(#-~z)12dz, (3) 

and II e(t)]l z equals the sum of II C~o(t)II 2 and II/~(t) II 2.  

Remark : Until now we have not been able to prove this relationship without using the integral- 
representations of the solutions. An alternative proof is based on the remark that, using the 
notation of 3.1, 

IIc~lt 2 -  II/~112 = - ( u ,  Du)  . 

This can be worked out, using the representation (3.2). In this way one is led to (1) provided 
that the second component o f f  (k) in (312) vanishes. The main theorem of this chapter is given 
by" 

Theorem 7. Let f (s)e L~(R),f (k) analytic in a vicinity of k=O and f (O)r Then a constant 
K exists such that for t ~  oo 

[1~--%112 <--<_ g t  -111~1t 2 , 

Proof: The proof will be split into some lemmas. 

Lemma 2. Let f(s)~L2(R ). For every t >O 

l l~-~ohl 2 = 2 IL~IL2+ 1[/~l l2+I,  

where 

I = l [  f~_ l + f ~  214)(z)[e'e~ dz, 

~b (z) = �89 [1 - (1 - zZ) ~] (1 - z2) -~ I f  (#- t  z)[2, 

7J,(z)-- # - l [ i z + i z ( l - z 2 ) : - 2 z 2 ]  , Wb(z) = Wa(-z).  
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Proof: Similar to the proof of theorem 6. 
In the three following lemmas we assume f (k) to satisfy the conditions of theorem 7. 

Lemma 3. A real positive constant L exists such that when t ~  oo 

]r %(t)rl e > Lt -~ �9 

Proof: Using the method of saddle-points (de Bruijn [6]) one easily finds 

2 If(0)12 ~ / ~ +  O(t --~) ( t~oo) ,  
II~~ 2~-~ ~2tJ  

from which the lemma immediately follows. 

Lemma 4. Real and positive constants K 1 and K 2 exist such that when t ~  zc 

II#N e =< Klt- , (4) 

[ I  II - -  2 /~  
e If(0)? < Ket-  

1 

(2t  J = " 

Proof: At first we remark that if the points - 1 and 1 are contained in the integration interval 
the integrals 

+ ~ sine �9 e-e--~u-~tlf(,u-lz)[2dz, 
L , '  l - - e  - - i - - 6  

where e >0, 6 >0, for t--+c~ are O(e-t/ute) when e and 6 are chosen small enough. Let e and 6 
be chosen in that way then 

[lfl(t)lI2 = O(tNe-~/~)+ 2~ ~ 1 + 4~(z2_1) If(S~z)leeeh(~'~ 

1 1" z2 
If(/2-1 z)[ 2 e - 2 Z e # - l t d z  , 

2 # ( P - 1 )  
where, if/~A > 1 + 6 

C =  [ - ~ A ,  - 1 - 6 ]  + [ - 1 + ~ ,  1 - ~ ]  + [1+6 ,  ~a ]  

and if #A < 1 + 6 

c =  l - e ] .  

The real part of h (z, 0) is smaller than - (2#)- * at the positive side of the cuts in both sheets of 
the z-plane. This implies that the integrals along [-I~A, - 1 -  6] and [1 + 6 , / d ]  are O (e -'Iv) 
for t-+ oo. As (ah/&) (z, 0) # 0 for z e [ -  1 + p, 1 - p] we find by using appendix 2 that the part of 
the first two integrals in the right-hand side running from - 1 + e to 1 - e  is O (t-2) when t--+ oo. 
The remaining integral from - 1 + e to 1 - e can be approximated by means of the saddle-point 
techniques which finally results in (4). The second part is also proved by using these techniques. 

Lemma 5. When t--,o~ 

I = If(O)le ~ / ~ +  O(t-~).  
~# (2 t  J 

Proof: As in lemma 4 we may choose e > 0  and p > 0  such that 

2 ii+~ I+~ 1 a~l [ o , _ e j  + f l l _ a j  ] q~(z)[e~~ O(te -t/u) 
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when t--+oo. The contributions of [ - # A , - l - p ]  and [ l + p , / I A ]  (if there are any) are 
O (exp-(1  +1x/3)/~-* t) when t--,oo. Remain two integrals running from - l + e  to 1 - e .  
Using appendix 2 we find the integral defined in the first sheet to be O (t- 2). Application of the 
method of saddle-points to the second integral then yields the required result. We now return 
to the proof of our theorem. From lemma 2, 4 and 5 we deduce the existence of a real positive 
constant K such that when t--+ oo 

lie- %112 < Kt--~ 

From this relationship and lemma 3 the theorem immediately follows. 

Remark 1. The condi t ionf  (0)# 0 is not essential to the proof. I f f  (0)= 0 the result turns out 
to be similar. 

Remark 2. The proof may also be given for other classes of functions, for instance the Hermite 
functions 

2 d" 
f (s )  = ( -  1)"e -~s - - ( e  -.2) ( n=0 ,  1, 2 . . . .  ) 

ds n 

the "Laguerre functions" 

f ( s ) = { ~  'es s < O I  (n = 0, 1, 2, ...) (5) 
s > 0 /  

and modulations of these functions with exp (iko s). Only slight modifications have to be made. 

Remark 3. Although the spectral range of the initial function f (s) may be very large we see 
that when t ~  oo Burgers' equation perfectly describes the behaviour of the a-mode. This rather 
surprising result is essentially due to the fact that the solution when t--+ oo almost only depends 
on the spectrum f (k) o f f  (s) in a vicinity of k = 0. 

5.2. The Asymptotic Behaviour of e and fi when t-*oo 

As the results concerning the e and fl-mode are a bit surprising it seems worth while to look 
at the asymptotic behaviour of the solutions e and fl itself and to see what actually is going on. 

For this purpose we shall use the method of saddle-points again. These are located at the 
roots of Oh/Oz = 0 or 

(1 - -2Z  2) 
= - 2 i z  ( l _ z 2 )  ~ - G(z). 

It is clear that with the possible exception of a finite number of values of { h(z, {) has three 
saddle-points. The reflection principle of Schwarz (Bieberbach [7]) shows that G (iz)= G* (iz*) 
where z* is the complex conjugate of z. If h has a saddle-point in iz then G* (iz) = G (iz) and so 
G (iz)= G(iz*) which implies that the saddle-points are located symmetrically with respect to 
the imaginary axis of the z-plane. As G l ( z ) = - G 2 ( - z )  (the index defines the sheet of the 
z-plane the function is defined in), it follows that if the pair {{, z} satisfies { = G1 (z) then { - {, 

- z} is a solution of { = G2 (z). Therefore we can confine our investigation to { > 0. By now it 
may be seen quite easily that if { runs from 0 to oo h2 has a saddle-point Z l ({) running along 
the imaginary axis of the z-plane from - ioo  to ic~ and h I has two saddle-points z2({) and 
za ({) in the upper half plane. They are situated as shown in fig. 1. 

By now it is quite standard to derive the asymptotic expansions of the integral-representa- 
tions. We shall not go into the details of this procedure but merely sketch its result derived for 
the case we use the continuous functions of (5) as initial data. When t--+ oo the a-mode of the 
wave-phenomenon consists of a right- and a left-travelling wave. It has sharp "peaks" around 
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~ ~ ~ v ~ v ~ 
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v 

Re 

Fig. 1. The contours  of the saddle-points  z 1 (~), z 2 (4) and z 3 (4)- 

Fig. 2. The ~-rnode. 

I 

~ S  

Fig. 3. The/?-mode.  

and maxima along s = t  (of O(t-~)) and s =  - t (O( t -~) ) .  To the left and to the right of these 
maxima e = O (e- c,), c > 0. 

The/ /-mode has the same features as the e-mode, however both maxima are O(t-~). The 
amplitudes at these maxima are opposite in sign. The width at half maximum of the peaks is 
O (t-~). In fig. 2 and 3 the situation, when n is even, is drawn. For L~ (R) and also for Hermite 
functions similar results may be derived. 
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6. Conclusions 

For everyf  (s)~ L~ (R) we have shown that for every finite interval of time [0, T] a convergent 
expansion in series of the solutions ~ and fl does exist indeed. The first term in the expansion 
of c~ is given by s0, the solution of the Burgers approximation problem. Furthermore for every 
t ~ [0,  T ]  

]l c~- ~OlIR,a _--< (e A~u~T- 1)11 c~[]R,a , 

which shows that the approximation in the interval [0, T] may be made as close as one wants 
to by choosing A, # and T. 

From (5,1), (5.2) and (5.3) some further information may be drawn. Letf(s) = rt- 1(sin #-  l s)/s, 
that is f ( # - l z ) =  1 for Izl <1  and f(/~-~ z )=0  elsewhere on the real z-axis. Then from (5.3) 
we easily obtain for t = #  

9 f' ? e - 2 : d z  > ~11~oll  2 , 

or using (5.1), (5.2) and the triangle inequality 

>___1 
[[e-%t] 2x/3 Ilaol] , 

which implies that under circumstances the simple wave approximation may break down. 
However, as we have seen before, when t--+oe a positive constant K exists such that 

II~-~oll _-__ Kt -~ tla0]l , 

and so the approximation may be used again. 

Appendices 

Appendix 1 

Define 

#2 k 3 
n(k, t -  z, s) = ~ sin k ( t -  z)" exp [ -  #k 2 ( t -  z) + iks]. 

Lemma 6. For every t ~ [0, T] and almost every s ~ R, the solution of (4.7) satisfies: 

f f - -  dk dzP,(k, t - z ,  s)~(k, ~), 
at ( ~ - % )  = -4 o 

: f f' f dk dr Ptt (k, t -  z, s) ~ (k, z) + dk Pt (k, O, s) ~ (k, t),  
~t2 (a-~176 = -a o -el 

3s" 3t j (c~- ao) = _ a dk dz ~)  P (k, t -  z, s) ~ (k, ~)(ik)", j = O, 1 ; n = O, 1, 2.  

Proof: 

odZ dk-~-~P(k,t-z ,s)( ik)t~(k,z)  ( j = 0 ,  1,2; l = 0 ,  1,2 . . . .  ) 
-4 

converges uniformly with respect to s ~ R, t e [0, 7"] for 

5 a . l t ( i k ) Z  ~3J I ] 22 1+3 fA i T -a dk o dz ~-fiP(k, t - z ,  s)a(k, z) =< ~ A  (A+/~A2) ~ -a dk o dzlgt(k,z)l 

< #2 ( A T ]  + at+3(A+~AZ)Jil<lQ, A 
\7C / 
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and c~ E L~ (Q). 
Now we have 

= dO dz dkPo(k, O - z ,  s)~(k, r) dz dkPt(k, t - z ,  s)~(k, r) -& o o -A 
0 - - A  

= - dk d~ dO Po(k, O -  ~, s) a(k,  ~) 
8t _~ o 

= - -  dk dz [P (k, t -  r, s ) -  P (k, O, s)] ~ (k, r) = 
at _~ o 

a(~-~o) 
at 

for P (k, 0, s)= 0. 
The other formulae can be proved in a similar way. 

Appendix 2 

Define 

I = g (z) e h(~)t dz (t >_ O, N >= N O > 0).  
- N  

9(z) and h(z) are complex valued functions satisfying" 

(a) For every z satisfying N => [z I >& >0  a positive constant p exists such that 

e~(~)t= O(e -p~) (t-,oo). 
(b) For every Izl _-< N, t >0  

leh(=)~l =< 1. 

(c) For every Izf < N h(z) is three times continuously differentiable and dh/dz r O. 

I g (z) l dz is finite. (d) -N 

(e) 9 (z) is analytic in a vicinity of z = 0. 

Lemma 7. When t ~ oo 

i=o(t-2) .  
Proof: Let 9 (z) be analytic in an open interval containing [ -  e, e] (e > & > 0). As is easily 
seen using (a) and (d) a positive constant p exists such that 

If ill + g(z)eh(Z)tdz = O(e-p t) 
- - a  

when t--* oo. 
From partial differentiation of the remaining integral using (c), (e) and the analyticy of 9 (z) 

one obtains 

f I = 0 (e-pt) + ~ -~ (h') 3 (h,) 4 j e h(~)t dz ,  (l) 

where the accent(s) denote differentiation(s). 

(1) and (b) now immediately imply the theorem. 
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